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ABSTRACT

In this paper we describe and evaluate a technique to im-
prove the amount of information gained from dynamic mal-
ware analysis systems. By playing network games during
analysis, we explore the behavior of malware when it be-
lieves its network resources are malfunctioning. This forces
the malware to reveal its alternative plan to the analysis
system resulting in a more complete understanding of mal-
ware behavior. Network games are similar to multipath ex-
ploration techniques, but are resistant to conditional code
obfuscation. Our experimental results show that network
games discover highly useful network information from mal-
ware. Of the 161,000 domain names and over three million
IP addresses coerced from malware during three weeks, over
95% never appeared on public blacklists. We show that this
information is both likely to be malicious and can be used
to improve existing domain name and IP address reputation
systems, blacklists, and network-based malware clustering
systems.

1. INTRODUCTION

Malware authors often implement a variety of techniques
to improve the reliability of their malicious network infras-
tructure. For example, short-lived domain names are used
by attackers to act as temporary drop sites for exfiltrated
private information. Fast-flux service networks [30] let at-
tackers rapidly change DNS resource records to improve the
availability of their malicious network infrastructure. Mali-
cious networks are becoming decentralized to eliminate a
central point of failure. All of these techniques improve
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the reliability of malware by making them more resistant
to take-down efforts. Furthermore, malware often makes
use of randomness when choosing domain names or IP ad-
dresses to use to contact its command-and-control (C&C)
server, which makes malware even more resilient and more
difficult to analyze.

In particular, this poses a problem for dynamic malware
analysis systems, which suffer from observing a single exe-
cution trace of a running program. For example, consider
a malware family that randomly chooses a C&C domain
name from a predefined list of 10 domains to connect to
at runtime. MD5 distinct binaries of this malware family
could have non-intersecting sets of domain names implying
that they are unrelated samples. Furthermore, if a malware
sample from this family successfully connected to the first
domain name it picked and queried, we would fail to see the
remaining nine domain names it could have used. These ad-
ditional domain names could be instrumental in providing a
malware sample a reliable way of contacting its C&C in the
event some of its domain names had been remediated since
it was initially created. Of existing malware samples seen in
the wild, how many employ alternative plans in the form of
additional domain names or IP addresses to contact in the
event of network failure?

In this paper, we present a framework that addresses the
primary weakness of dynamic malware analysis from a new
point of view using the concept of network games. A network
game tricks executing malware into revealing additional net-
work information i.e., domain names and IP addresses. By
providing fabricated network responses, malware is led to
believe its C&C is unavailable forcing it to attempt to con-
nect by whatever means necessary. Gaming malware from
the network is complementary to existing approaches, such
as multipath exploration [22, 38], but is resistant to eva-
sion through conditional code obfuscation [34]. By using
RFC-compliant network responses, games are indistinguish-
able from legitimate network responses from the malware’s
perspective on the host. Using our framework, GZA!, we

'Named after the Wu-Tang Clan member also known as
“The Genius”



design a suite of games to understand the use and preva-
lence of alternative plans in malware in the wild by explor-
ing malware behavior under a perceived unreliable network.
Furthermore, we quantify the usefulness of the additional
network information to security practitioners by examining
public blacklists for the appearance of this information.

The gains generated from playing network games with
malware directly benefits DNS and IP reputation systems [2,
4], network-based malware clustering systems [24], and tra-
ditional domain name and IP address blacklists. Further-
more, with these games we can obtain a better understand-
ing of domain name generation algorithms [25, 39] (DGA)
to aid in reverse-engineering them.

Specifically, our paper provides the following contribu-
tions:

e We design and implement a framework, GZA, for ex-
ploratory malware analysis using the concept of net-

work games. Network games can be implemented quickly

in as little as 100 lines of Python to respond to devel-
oping malware behavior and fit the specific needs of a
malware analyst.

e Using GZA, we measure the prevalence of alternative
plans in malware. We analyze a large dataset con-
taining 2,191 distinct malware samples, and show that
approximately 17% of the samples exhibit alternative
plan behaviors.

e We study the long-term benefits of using network games
to complement existing malware analysis techniques.
Network games coerce, on average, an additional three
domain names and two IP addresses from samples with
alternative plans. Approximately 95% of the coerced
information never appears on public blacklists through-
out the course of our study. Over 76% of the coerced
domain names were flagged as potentially malicious by
the domain name reputation system Notos [2].

The remainder of this paper is structured as follows. In
Section 2 we explicitly define network games and the specific
games we used in our study. In Section 3 we describe the im-
plementation of GZA. We present the methodology for two
studies to examine alternative plan prevalence in Section 4,
with the subsequent results shown in Section 5. We discuss
the implications of network games as well as potential eva-
sion techniques and their solutions in Section 6. We discuss
similarities and differences from prior work in Section 7 and
conclude the paper in Section 8.

2. PLAYING GAMES WITH MALWARE

Malware uses the same network protocols that benign soft-
ware uses when performing malicious activity. Despite the
fact that many network protocols exist, nearly all commu-
nication on the Internet follows one of two patterns:

1. A transport layer (e.g., TCP and UDP) connection is
made to an IP address directly, or

2. A DNS query is made for a domain name (e.g., google. com)

and a connection to the returned IP address is made
as in #1.

Higher-level protocols leverage these two use cases for nearly
all communication. If we can assume malware relies on these

two patterns for contacting its C&C servers and performing
its malicious activities, these are the patterns we must target
during analysis.

We define a network game to be a set of rules that de-
termine when to inject “false network information” into the
communication between a running malware executable and
the Internet. More specifically, false information is a forged
network packet. Consider the running malware sample m in
Figure 1(a). Sample m first performs a DNS query to deter-
mine the IP address of its C&C server located at foo.com.
The returned IP address, a.b.c.d, is then used to connect to
the C&C and the malware has successfully “phoned home”.
Sample m could also bypass DNS entirely if it were to hard-
code the IP address of its C&C and communicate with it di-
rectly, as we see in Figure 1(c). This gives us two opportuni-
ties to play games with sample m as shown in Figures 1(b,d):
we can say the domain name resolution of foo.com was un-
successful (b) or the direct connection to IP address a.b.c.d
was unsuccessful (d). At this point, sample m has four pos-
sible courses of action:

1. Retry the same domain name or IP address,

2. Remain dormant to evade dynamic analysis and try
again later,

3. Give up, or
4. Try a previously unused domain name or IP address.

In (b) and (d), we see the malware samples taking action #4
and querying a previously unseen domain name (bar.com)
and IP address (e.f.g.c), respectively. Action #2 is a com-
mon problem in dynamic malware analysis systems in gen-
eral and is further discussed in Section 6.2.

2.1 Notation

Stated more formally, let A be a machine infected with a
malware sample m that is currently executing in our analy-
sis system running game Gname. Gname iS & packet transfor-
mation function called name. Given a packet p, Gname (D)
represents Gname gaming p and its value is either the origi-
nal packet, or some altered packet p’ that changes the intent
of p. The implementation details of Gpame determine when
to return p or p’. For example, p could contain the resolved
IP address of a queried domain name d, whereas p’ says d
does not exist. In all other ways, such as type of packet and
source and destination IP addresses, p and p’ are identical.
As h communicates with the outside world, it sends ques-
tion packets, ¢;, in the form of domain name queries and
requests to initiate a TCP connection and receives response
packets, 7;, in the form of domain name resolutions and ini-
tiated TCP connections?. False information is provided to
the host h by delivering Ghame(7;) in lieu of ;. A sample set
for m, Gname,m represents the set of unique domain names
and IP addresses queried by m while running under Grame-
The functions D and I operate on sample sets and return
the subset of unique domain names or the subset of unique
IP addresses, respectively. Given a set of malware sample
MD5s, M, a game set, GM, . represents the subset of sam-
ples that were “successfully gamed” by Gname. A game is
considered successful if it forces a malware sample to query

2More accurately, a TCP response packet is a TCP SYN-
ACK packet as part of the TCP connection handshake.
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Figure 1: Malware samples m (a-b) and m’ (c-d) ini-
tiating a connection with the C&C server. m con-
nects by first performing a DNS query to determine
the IP address of its C&C server followed by initiat-
ing a TCP connection. Sample m' connects directly
to the C&C using a hard-coded IP address. Exam-
ples (a) and (c) connect without intervention by a
game, while (b) and (d) have false information (de-
noted by boxes) injected.

more network information than under a run without a game
present. We formally define this in the following section.
The described notation is summarized in Table 1 and will
be used throughout the remainder of the paper.

2.2 Designing Games for Interrogating Mal-
ware

Crafting games without a priori knowledge of malware
network behavior is difficult. Furthermore, a successful game
for sample m may be unsuccessful for sample m’. By using
generic games “en masse”’, we improve our chances of suc-
cessfully gaming malware during analysis. We design a suite
of games to coerce a given malware sample into showing its
alternative plan during analysis. We apply all games to a
malware sample to improve the likelihood of success. Each
game focuses either on DNS or TCP response packets in
an attempt to harvest additional C&C domain names or IP
addresses, respectively. For a DNS response packet p4, p}
is a modified response packet that declares the queried do-
main name does not exist, i.e., a DNS rcode of NXDOMAIN.
For a TCP response packet p:, p; is a modified response
packet that terminates the 3-way TCP handshake, i.e., a
TCP-RESET packet. In this paper, we choose to focus on

Ghame A game called name.
Grame (D) The result of Ghame’s transformation on
packet p.

The set of network information i.e., unique
IP addresses and domain names contacted,

generated when malware sample m is gamed
by Gname-

Gname,m

GM . The subset of malware samples from M that
were successfully gamed by Grame-

Given a sample set, s, return the subset of
unique domain names or IP addresses in s,
respectively.

Table 1: Notation for describing games and the sets
they generate.

DNS/TCP packets as they are the predominant protocols
used to establish and sustain C&C communication; how-
ever, our approach is general and can be adapted to other
protocols used less commonly in C&C communication. The
design of an individual game is based on anecdotal evidence
of how malware samples, in general, communicate. We de-
sign seven games to perform our analysis of alternative plan
behavior in malware:

Gnull-

To provide a baseline to compare the effectiveness of fu-
ture games, this game allows response packets to reach its
host without modification. In other words, G is the iden-
tity function.

Note that this does not mean malware communication is
allowed to run completely unfettered. We perform stan-
dard precautionary measures to prevent malicious activity
from harming external systems. However, these measures
are not considered part of our network games, but simply
good practice when analyzing potentially malicious binaries.
We discuss these precautionary measures, which are always
performed irrespective of the active game, in detail in Sec-
tion 3.2.

Gdnsl-

Malware often immediately connects to its C&C or per-
forms some probing operation to determine the status of its
network before doing so. This game assumes the first domain
name lookup corresponds to a test of network availability
and should be allowed to pass through without modifica-
tion. Subsequent domain name lookups for domains other
than what was queried first will be spoofed. For example, if
google.com is the first domain queried, all subsequent do-
mains that are not google.com will be spoofed. We approxi-
mate this behavior in the next game using a whitelist. For a
DNS response packet pd, Gans1(pq) returns pq if its the first
DNS request packet and pl; otherwise. Gans1 is successful
fOI' m lff ‘Gdnsl,ml > ‘D(Gnull,m)l-

Gdnsw~

A popular domain name, like google.com, is unlikely to
operate as a C&C server for a botnet. Therefore, DNS
queries on popular domain names are unlikely to be conceal-
ing additional malicious network information. For a DNS
response packet pg, Gansw(pd) returns pq if the domain be-
ing queried is whitelisted and p/; otherwise. Our whitelist is



comprised of the top 1000 Alexa domain names [1]. Gansw
is successful for m iff |Gansw,m| > |D(Guull,m)|-

Gtcpw-

An IP address that resides in a known benign network
is also unlikely to function as a C&C, much like a popu-
lar domain name. For a TCP response packet pi, Giepw (Pt)
returns p; if the IP being queried is whitelisted and p; oth-
erwise. Our whitelist is the dnswl IP-based whitelist [17].
Glepw 1s successful for m iff |Giepw,m| > [I(Gnull,m)]-

Gtcpl-

Malware is often delivered by a dropper, a program that
downloads, installs and runs the actual malicious binary. If
we prevent the dropper from downloading its malicious pay-
load, we will not observe the malicious behavior and fail to
unearth alternative plans. We create a class of games that
focus on droppers by allowing a variable number of TCP
streams to successfully complete before forging response pack-
ets. For a TCP response packet pt, Gicp1(pt) returns py if
the packet is the first TCP stream and p} otherwise. Gliepl
is successful for m iff |Gicp1,m| > |I(Gnuit,m)]|-

Gtcp2-

Droppers can have multiple stages where malicious pay-
loads are downloaded in more than one TCP stream. This
games two stage droppers. This game is the same as Gicp1,
but allows two TCP streams to complete. For a TCP re-
sponse packet p:, Gicpa(p:) returns p; if the packet is the
first or second TCP stream and p; otherwise. Gicp2 is suc-
cessful for m iff |Giep2,m| > |[1(Gnull,m)]-

Gtch-

While one and two stage droppers are fairly common in
the wild, we wanted to test for three stage droppers. We
can compare the results for Gicp1, Giep2 and Gicps to deter-
mine when we no longer benefit from increasing the number
of allowable TCP streams. This game is the same as Gicp1,
but allows three TCP streams to complete. For a TCP re-
sponse packet p:, Gicps(p:) returns p; if the packet is the
first, second or third TCP stream and p; otherwise. Gicps
is successful for m iff |Gecps,m| > |1(Gnutl,m)|-

3. GZA

In this section, we describe the architecture of GZA and
specific implementation details of our system.

3.1 Architecture

GZA contains two components: dynamic malware anal-
ysis and gameplay. The first component simply runs mali-
cious code in a fresh virtual machine (VM) and records all
network activity that occurs in the VM. All network activity
for a VM is routed through one of the games described in
Section 2.2 as seen in Figure 2. While the malware sam-
ple under analysis initiates communication with its C&C,
all packets destined for a VM are routed through a network
game. The game decides whether to faithfully route the re-
sponse packet, or construct and send a spoofed packet, to
the sample. Games are run on the host machine in isolation
from the VMs, so malware cannot detect that its network ac-
tivity is being analyzed and modified. As discussed earlier,
all spoofed responses are RFC-compliant packets of the pro-

tocol currently being gamed making them indistinguishable
from legitimate responses. As any analysis technique gains
traction, malware authors will begin to attempt to circum-
vent it. Therefore, we discuss possible evasion techniques
and how to mitigate them in Section 6.2.

Internet

Figure 2: An overview of network traffic routing in
GZA. Multiple virtual machines (VM) are run on a
host using GZA. Each VM is paired up with a game
G and a single sample is run against n + 1 games.
This includes G, to act as a baseline. Each VM’s
network is isolated from all others to prevent local
infection. VM network traffic is routed through its
paired game to perform the required packet trans-
formations. There can be multiple groups of these
on a single host to perform bulk sample analysis.

3.2 Implementation

GZA? is a collection of Python scripts that run malware
samples inside a virtualized Windows XP instance in kvm
and route packets to implement the games described in Sec-
tion 2.2. All applications and services that could generate
DNS or TCP traffic automatically are disabled to ensure
that gamed packets are from the analyzed malware only.
Before packets are routed for gameplay, precautionary mea-
sures are performed to prevent malware from damaging ex-
ternal systems. All SMTP traffic is redirected to a spam trap
to prevent spamming and traffic to local systems is dropped
to prevent local infection of nearby machines or concurrently
running VMs. Each VM has its packets routed through the
host running kvm using iptables [23] with relevant packets
being forwarded to a Python script that runs a game. This is
done through the iptables NFQUEUE interface that redi-
rects each packet to a user-mode process which decides if
the packet should be accepted or dropped. If the game re-
turns the original packet, the NF_ACCEPT message is returned
to the host’s kernel and the packet is routed faithfully. If
the game returns a spoofed packet, NF_REJECT is sent to the

3https://github.com/ynadji/drop



host’s kernel and a forged packet is created and sent to the
VM using the packet manipulation library scapy [5].

Games are very short Python scripts that provide two
external functions: playgame and spoof. playgame instructs
the host’s kernel to route the original packet or to drop it;
spoof generates and sends a falsified packet to the VM if
the original packet was dropped. GZA allows for additional
games to be created and removed as its operator sees fit.
The implementation of all six of the DNS and TCP games
took only 113 lines of code combined.

4. STUDY METHODOLOGY

Using the idea of playing games with malware, we design
and run two studies to understand alternative plans in mal-
ware. The first goal of this study is to understand the preva-
lence of alternative plans in malware and determine which
games are the best in general; successful games force exe-
cuting malware to reveal the most additional information.
The second attempts to quantify how useful this previously
unknown information is by determining how long it takes for
newly discovered domain names and IP addresses to appear
on publicly available blacklists; coerced network information
is more useful the longer it takes to appear. We assume that
non-whitelisted network information contacted by malware
is malicious. Note that not all games use the whitelist, but
during our evaluation we ignore additional network infor-
mation that is whitelisted. For example, if Gans1 caused
additional benign domains to be queried, it would not be
considered successful. For TCP-based games, we also ignore
additional A records returned by DNS requests. We validate
this assumption by providing DNS reputation scores for do-
main names. Furthermore, we show how this increase in
network information can improve the accuracy of network-
based clustering systems. In both studies presented, all sam-
ples are run for five minutes. We discuss timing based eva-
sion further in Section 6.2, but in short the issue is common
across all dynamic analysis systems and is orthogonal to the
problem we address in this paper.

4.1 Representative Study

We created a dataset, Dg, of 2,191 distinct malware sam-
ples obtained between April 2010 and October 2010 from
a variety of sources, including: low interaction honeypots,
web crawlers, mail filters and user submissions. We used
several sources to approximate the general malware popula-
tion as closely as possible. Additionally, all samples in Dr
were flagged as malicious by both Symantec and McAfee.
For all malware samples m € Dg, we run m in GZA against
each game described in Section 2.2. The astute reader will
notice that we run the risk of uncovering new information
by chance. Consider a malware sample that is analyzed at
two distinct times, ¢ and t" where t < t’. It is possible that
the malicious network infrastructure changed at some time
v where t < v < t/, which could taint our results. To elimi-
nate this possibility, a single sample is run against all games
at the same time.

Malware tend to rely on either domain names or IP ad-
dresses to communicate with their C&C. Using this assump-
tion, we can increase the throughput of GZA for the long-
term study by only using the two most successful games for
each protocol.

4.2 Long-term Study

In addition to measuring the prevalence of alternative
plans in malware, we want to determine how useful this in-
formation is the day a malware sample appears on a malware
feed. Detecting malicious domain names and IP addresses
before they have appeared in blacklists offers a tangible im-
provement to companies and researchers that use domain
name and IP address reputation systems, perform network-
based malware clustering, or maintain domain name and IP
address blacklists.

Using the two games chosen from the previous study and
Ghull, we play games with malware samples provided by our
daily malware feeds over the course of three weeks. Each
day, we analyze all the samples we encounter on our feeds
using GZA. Samples that do not generate any network traffic
while executing under Gnhun are removed from our results.
For each sample that is successfully gamed, we must evaluate
the usefulness of the newly obtained information. To do this,
we cross-reference the domain name or IP address against
eleven public blacklists [12, 20, 15, 16, 21, 35, 19, 13, 27,
29, 26]. The blacklists provide two dates: dy, the first day a
domain name or IP address appeared on the blacklist and dj,
the last day a domain name or IP address appeared on the
blacklist. For each additional piece of network information,
ni, and the day it was coerced, t, we place it into one of four
categories:

1. blacklisted: if n, appears on any of the blacklists
after we coerced it on day ¢ i.e., t < dy.

2. decommissioned: if n; appears on any of the blacklists
before we coerced it but has since been decommissioned
le., df <d; <t.

3. campaigning: if n; appears on any of the blacklists
and is currently being used i.e., dy <t < d;.

4. never: if n; does not appear on any of the blacklists.

Each category provides interesting insight into a malware
campaign. blacklisted network information shows our strat-
egy can coerce domains that other parties eventually flag
as malicious. decommissioned network information shows
that while malware may stop using a network resource, they
can quickly and easily resume using one. campaigning net-
work information are seen in samples that connect to multi-
ple network resources during normal operation. For exam-
ple, a sample randomly chooses which domain name to use
to contact its C&C. never network information is perhaps
the most interesting. These are domains and IP addresses
queried by malware that never appear on public blacklists
throughout our experiments. blacklisted and never are
the most useful categories of network information and pro-
vide the best improvements to systems that rely on such
information.

By comparing generated malware sets, we will extract new
relationships between malware originally thought to be un-
related. Consider two malware samples, mi and mso that
when run using Gnun they query domains d; and do, respec-
tively. However, when run using Gansw, they both query
di and d2. mi and meo are said to be strongly related in
Gansw- Strongly related samples have distinct sets of net-
work information when run in G,u but identical sets when
run in any other game. For example, consider a malware
family that randomly chooses a C&C domain name to con-
nect to at runtime. MD5 distinct versions of this malware



family could have distinct game sets in Gy but would have
identical game sets in Gansw. Strongly related samples are
likely to be related in some way, for example, they could be
members of the same botnet. More formally, two malware
samples, m; and ma, are considered strongly related in G;
iff:

O(Gi,ml) - C(Gi,mz) and C(Gnull,ml) 7{ C(Gnull,mQ)

where C'is a function that returns either the subset of unique
domain names or unique IP addresses depending on the
game type of G; i.e., C'is either D or [ from Table 1. Samples
could be related without being strongly related, however, we
focus only on strongly related samples in this paper. Us-
ing network games, we can improve malware clustering that
uses network features. Furthermore, we use the existing do-
main name reputation system, Notos [2], to validate that
our newly discovered domain names are actually malicious.

S. ANALYSIS
5.1 Representative Study

A summary of the results from the representative study
are available in Table 2. Of the 2,191 samples in our dataset,
17% were successfully gamed by at least one of the games
described in Section 2.2. Of the two types of games, DNS-
based and TCP-based, Gansw and Gicpw were successful the
most often with 6.0% and 7.5% success rate, respectively. In
most cases, the increase in network information was between
one and three new domain names or IP addresses for alter-
native plans. A plot of network information gains is shown
in Figure 3. Both graphs are heavily skewed to the right
which shows that if a malware author had the foresight to
include an alternative plan they used few additional network
resources. For increases in IP addresses in Figure 3(a), we
see little difference between each individual strategy with re-
spect to the amount of information increase. Figure 3(b) is
similarly structured, but with a large spike at 14 additional
domain names for Gansw. Dgr contained 37 unique samples
of the same malware that all queried the same set of domain
names.

In addition to understanding the successes of each game
individually, examining cases where multiple games were
successful on an individual sample yield insight into under-
standing malware alternative plans. Table 3 shows this over-
lap by examining pairwise Jaccard Index [36] of the game

sets of each game. The large overlap of 0.93 between anlzl

and the more successful anlzw show that a naive whitelist-
ing strategy is sufficient and improves upon hard-coding for
common patterns in malware. Gansw generalizes the behav-
ior captured by Gansi- TCP-based games exhibit a much
smaller overlap, primarily due to the specific staged drop-
per the game targets i.e., Gicp2 targets two staged droppers.
Game performance dropped from Gicpw t0 Gicpr and Giept
to Gicp2. This shows that hardcoding for droppers is less
effective than a whitelisting approach.

Furthermore, the small overlap of 0.20 between all DNS-
based and TCP-based gamesets, G7 and Gﬁg shows that
malware authors focus primarily on adding reliability us-
ing additional domain names or IP addresses for their C&C
servers, but rarely both. Since we can approximate our
DNS-based games with Gansw and Gicpw is the best per-
former among TCP-based games, we will use these two games

in our long-term analysis.

Game | % Gamed Min Gain Median Gain Max Gain
Gans1 4.4% 1 2 28
Grept 6.3% 1 1 54
Glrepo 5.4% 1 1 36
Gleps 5.4% 1 1 45
Total | 17.3% - - -

Table 2: Summary of results of the representative
study of alternative plans in malware. The most
successful DNS and TCP strategies are highlighted.

D D D D D D D

Gdnlzl Gd,ﬁw Gccgw Gtcgl Gtc§2 Gtc§3 Gmﬁ

G%’}{gl 1 0.93 - - B B _

G R 0.93 1 - - - R R
D

GtDcﬁ'w - - 1 050 045  0.46 -

Gt - - | 050 1 036 041 a

Gl - | 045 036 1 043 .
D

Gt5§3 - - 0.46 0.41 0.43 1 _

G R - - - - - - | 0.20

Table 3: Overlap in game strategies represented by
the Jaccard Index. an}: and Gfig are the union of

the DNS and TCP game sets, respectively.

5.2 Long-term Study

We ran approximately 4,000 malware samples a day through
GZA using three games {Gnuil, Gdnsw, Gtepw} from March
11*" to March 31°*. In general, nearly all coerced network
information was never blacklisted (category never) during
the course of our study. See Table 4 for an example of the
output for a single day of analysis that took place on March
15", Of the unique domains and IP addresses coerced, ap-
proximately 96% and 99% never appear on public blacklists
by April 2nd, respectively. A small number were considered
blacklisted, decommissioned and campaigning. A break-
down of these categories for the entire study are shown in
Figure 4. As shown by the plot, almost all coerced network
features never appear on public blacklists.

Network feature Category Count
Domains Blacklisted 3
Domains Decommissioned 15
Domains In Campaign 10
Domains Never Blacklisted 669
Domains Total 697
1P Blacklisted 1
P Decommissioned 6
1P In Campaign 7
P Never Blacklisted 3381
P Total 3395

Table 4: Breakdown of coerced unique network in-
formation by category and protocol for March 15th.

The additional network information generated by our games
makes relationships between malware samples clearer by pro-
viding a more complete picture of C&C communication.
Consider a graph K where the vertices are malware sam-
ples for a given day of our long-term experiment and edges
between vertices represent shared network information. For
example, two malware samples that both connect to a do-
main name d would have an edge drawn between them in
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Figure 4: Frequency of network features by category over the course of the entire study. The top row of
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K. As we uncover more information through gameplay, we tually form strongly related connections between malware
add additional edges into K. If these additional edges even- samples, we should see a decrease in the number of compo-



nents in graph K. Figure 5 shows that for Gansw we always
see a drop in the number of components in the game graph of
its network information compared to the graph under Gpun.
Gicpw exhibited no change in the graph from Gpun.

We also used Notos [2] to show the usefulness of our infor-
mation. Given a domain name, Notos classifies the domain
as: suspicious, unknown, or whitelisted. Along with a clas-
sification, Notos also provides a confidence score. Notos was
trained using four weeks of passive DNS data gathered from
six ISP-based DNS recursive sensors located across North
America. Notos uses the top 2,000 Alexa 2LD domain names
and the same blacklists used in this study. Of the 161,000
unique domain names contacted during our long-term study,
we ran a simple random sample of 15,050 of them through
Notos and over 76% of them were flagged as suspicious (see
Table 5). The whitelisted domain names were primarily:
mail servers, dynamic DNS providers, and content distribu-
tion networks. Notos had high confidence in its classification
of our coerced domain names: 80% of suspicious domains
and 98% of whitelisted domains had confidences above 95%.

Classification Count Percentage
Suspicious 11,519 76.5%
Not Known 2 < 0.01%
Whitelisted 3,529 23.4%
Classification Mean Confidence -
Suspicious 0.9731% -
Whitelisted 0.99565 -

Table 5: Domain name classification results and
mean confidence values from Notos.

6. DISCUSSION

We discuss the implications of our findings as well as po-
tential evasion techniques malware authors may implement
to circumvent network games in general.

6.1 Malware Alternative Plans

Our results report that malware is constructed naively
and often relies on a single domain name or IP address to
initiate and maintain a connection to its C&C server. Mal-
ware that does provide an alternative plan infrequently uses
its additional network information demonstrated by the vast
majority of domain names and IP addresses that do not ap-
pear on public blacklists. This may explain why only 17%
of samples responded to network games. Another explana-
tion is more specific games, perhaps dynamic ones, must be
implemented to realize gains in a larger proportion of sam-
ples. We are currently exploring these questions as potential
future work.

In general, coerced domain names are more useful than
coerced IP addresses. Domain names and abusing the DNS
allow for more volatile malicious networks than an attacker
could accomplish with IP addresses alone. Furthermore, it
is easier to vet the maliciousness of domain names than IP
addresses, making them more attractive to security practi-
tioners.

6.2 Evasion

Attackers are always attempting to evade newly created
defenses. The most obvious ways to evade our system are
through timing attacks, peer-to-peer validation of network

resource connectivity, communicating with different proto-
cols, or by evading dynamic analysis entirely with excessive
timeouts prior to performing malicious behavior. We discuss
these evasion techniques and present methods to address
these shortcomings. Since our games use RFC-compliant
network responses, malware is unable to determine if it is
being gamed at the host-level and subsequently must use
the network in clever ways to determine its execution envi-
ronment.

Dynamic malware analysis systems generally execute mal-
ware for a fixed period of time, usually around five minutes
per sample. Malware can remain dormant until this time
passes to evade detection and analysis. Prior work addresses
this limitation by finding these trigger-based behaviors and
generating inputs to satisfy the triggers at runtime. This
limitation applies to all dynamic analysis systems in gen-
eral and is orthogonal to the problem we are trying to solve
of increasing the network information an executing sample
attempts to connect to.

Overhead incurred during usermode packet generation could
enable a clever malware author to determine if they are be-
ing gamed or not. As a performance improvement, GZA will
only route packets relevant to the game in question. For ex-
ample, when Gansw is being played, iptables will only route
UDP packets with a port of 53 destined for a VM. If DNS
packets take abnormally long, while packets of other types
are unaffected this could alert a malware sample that it is
being analyzed. Simply routing all packets through its game
would apply this overhead uniformly across all packets, re-
moving the signal.

Peer-to-peer (P2P) evasion is when a malware sample ver-
ifies the results of a DNS or TCP request by asking another
infected machine to perform an identical request. If a sam-
ple, m, cannot resolve a domain name d, but fellow infected
hosts can resolve d successfully, m has reason to believe it
is being run under our system. Communicating this infor-
mation, however, requires the network. This forces m to
succumb to gameplay one way or another; gaming of its ini-
tial C&C communication or gaming of verification queries
to its peers. By focusing on the building blocks of network
communication, we force all network activity to be gamed.

To perform a DNS query, a malware sample could query
an HTTP-based DNS tool®, bypassing the DNS protocol en-
tirely. Furthermore, it could directly connect to a C&C us-
ing a non-gamed protocol, such as UDP. These problems are
easily addressed by running aggregate games and adding ad-
ditional protocols. Querying an HTTP-based DNS lookup
tool still requires some network activity so running DNS
and TCP games simultaneously would prevent this lookup
from succeeding. If an attacker uses another protocol, such
as UDP, it is easy to write a new game that targets this
new behavior. As malware adapts to the presence of net-
work games, malware analysts can keep pace with malware
authors without too much effort.

7. RELATED WORK

Deception through gameplay has been discussed [31, 11,
8, 37], or implemented by hand [10], but little empirical
work has been done to demonstrate the usefulness such an
approach provides. Prior work traditionally focuses on im-
proving information gain generated by honeypots [37, 8] us-

Shttp://www.kloth.net/services/nslookup.php
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Figure 5: Numbers of components for Gansw and Gnu for each day of the long-term experiment.

ing game theory to model interactions between an attacker
and a honeypot operator. Carroll et al. focus on gains
generated by having a honeypot masquerade as a normal
machine, or vice-versa, and show in which cases a Nash
equilibrium can be reached. Wagener et al. similarly tried
to achieve equilibrium, but also played games with live in-
truders. The honeypot was crafted to randomly fail process
spawning system calls to coerce an attacker into attempting
workarounds for failing tools, hopefully leading to previously
unknown tools and exploits. Gaming the botnet C&C net-
work redundancy mechanism, what we refer to as alternative
plans, was discussed and used to improve returns generated
by a spamming botnet analysis engine [18]. Anticipation
games [7], an extension of attack graphs which are based on
game theory, were designed to anticipate malicious interac-
tion with a network and determine the answer to questions
such as determining the most effective patching strategy for
a given network. We differ from previous gameplay work
in that we focus on gathering network intelligence, rather
than host-level information, and we quantify the usefulness
of this network information to security practitioners.

GZA is similar, but complementary, to other techniques
that attempt to coerce malware into revealing useful infor-
mation. All systems that rely on dynamic binary analysis
run into the problem of code coverage, which researchers

have addressed by forcing execution of all possible branches [22,

38]. Multipath exploration provides a complete view of pos-
sible execution paths of malware but can be evaded with
conditional code obfuscation [34] or made impractical due
to the exponential explosion in search space. Sharif et. al.
describe malware emulators [33], or malware obfuscated by
a randomized bytecode instruction set, that would evade
multipath exploration. During dynamic analysis, multipath
exploration would explore the paths of all possible bytecode
programs rather than the execution paths of the malware
itself. Since network games do not target binary execution
paths, we are resistant to this evasion technique and provide
a complementary analysis method. Furthermore, malware
increasingly uses external stimuli in the form of trigger-based
behaviors to determine execution. Malware can determine
its execution environment [32, 28, 9] prompting the use of
hardware virtualization [14]. More sophisticated techniques
include waiting for a specific date to occur or a particular
website to be visited. Research has shown how to detect
changes in malware behavior as well as determine the un-
derlying cause [3, 6]. We differ from prior work in malware
analysis by introducing the concept of evasion-resistant net-

work games. By performing execution path exploration from
the network instead of the host, we make it difficult for mal-
ware to detect it is being gamed or evade our games.

8. CONCLUSION

In this paper, we designed and built a framework, GZA,
to explore malware execution paths using the concept of net-
work games. By playing network games with malware, we
described the prevalence of alternative plans in malware by
examining a large malware corpus of 2,191 samples and per-
forming a long-term study over three weeks of malware sam-
ples obtained from malware feeds. Our six network games
coerced samples into revealing their alternative plans and
the additional network features malware used to enact those
plans. We show that while alternative plans have promise
to be used to improve malware reliability, they go relatively
unused in malware seen in the wild. Only 17% show this
behavior. This new network information, however, is very
useful with approximately 95% never appearing on public
blacklists. This directly improves systems that rely on net-
work information, such as blacklist generation, domain name
and IP address reputation systems, and malware clustering
on network features.
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